Software Engineering with Formal Methods: The storm surge barrier revisited

Klaas Wijbrans (Acision)
Franc Buve, Robin Rijkers, Wouter Geurts (Logica)
Company Introduction

- Acision is the world’s leading messaging company
 - Over 50% of all SMS messages in the world are delivered by our product
 - Proven track record in Multimedia Messaging, Unified Messaging and Mobile Internet
 - Leader in standardization of Converged IP Messaging
 - Originated from the LogicaCMG Telecom Products division

- Logica is the leading IT company with a 40-year track record in innovative systems
 - Merged with CMG in 2002 to form LogicaCMG
 - Acquired WM-data, Edinfor and Unilog
Introduction

Topics
• What is the Maeslant barrier and where is it located?
• Design principles behind the barrier
• Failure probability
• BOS
• Use of formal methods
• Lessons learned in operation
• The mid-life upgrade
• Current status and a look to the future
Location of barriers

Maeslantkering

Hartelkering
More than just an open/close decision

- **Anticipate** storm (minimal 8 hours) (to warn sea traffic)
 → **predict**
- **Inform** authorities
 → **fax, pager**
- **Three** barriers to control
 (Waterwegkering, Hartelkering and Hartelsluis)
 → **mutual dependencies**
- **Unjustified closure** very undesirable
 (economic interests)
 → **critically tuned**
- **Unjustified not opening** is dramatic
 → **barrier destroyed**
- **Continually monitoring** in submerged state
 (vulnerable for waves and water height from land side)
 → **real-time monitor**
- **Detection of failure** before it is too late
 → **active monitoring**
- **Extensive maintenance** procedures
 → **support**
Design Principles

• Conventional over-dimensioning for safety not feasible
• New approach in design
 – “Just good enough”
 – Failure probability analysis for every element in chain
• But:
 – Barrier must be just as reliable as a dike!
 – Acceptable risk of failure dike: 1 flooding in 10,000 years
 – Frequency of extreme high water: 1 storm in 10 years
 – Acceptable risk of failure barrier: 1 failure in 1,000 closures
Failure Probability Tree

- Failure probability divided over components
 - Steel construction, joints, engines, electro-mechanics, decision system (BOS)
- Damage when not opening higher than not closing!
 - Failure to open: less than 1 in 10,000 (10^{-4})
 - Failure room for decision: 1 in 50,000 = 2 \times 10^{-5}

<table>
<thead>
<tr>
<th>Closure 1E-3</th>
<th>Opening 1E-4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2E-5</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Decision process

<table>
<thead>
<tr>
<th>HW</th>
<th>SW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Failure Probability Tree

- Failure probability of decision of 2×10^{-5} impossible for humans
 - Average human 10^{-2}
 - Trained fighter pilot 10^{-3}
- Decision has to be automated =>
 - Beslis- en Ondersteunend Systeem (BOS)
Design Approach

- IEC-61508 introduces Safety Integrity Levels for critical systems
- SIL-4 dictates use of risk-based approach
- Attention to non-functionals from the very beginning
- Rigorous development method including formal methods together with other techniques
BOS Basic Concept

Hydro- en meteo-informatie
(stromingen, waterstanden, ...)

Data-communicatie net

Meta-computer BOS
(besturingssysteem)

Procedure Script Interpreter

Hydraulisch Model

Procedure script met kennis- en beslisregels

GUI

Proces-informatie naar personeel
(oproepen, faxen, ...)

Besturing Stormvloedkering
Nieuwe Waterweg

Besturing Hartelkering

Besturing Hartelsluis

Besturing Hartelkering
Use of formal methods - 1

- Modeling and validation of communication and interaction
 - Process architecture modeled/validated in Promela/SPIN
 - Communication with external systems modeled; validated in Promela/SPIN
 - Ensures progress and absence of livelock/deadlock in core architecture

- Behavioral modeling proved to be easy to learn and very insightful
 - Significant changes at protocol level made because of formal validation
Use of formal methods - 2

• Modeling of data and algorithms using Z
 – Case tool for modeling BOS system using Ward & Mellor
 – Functionality and data in each process, store and flow modeled using Z
 – Design documentation generated from case tool using scripting and LaTeX
 – Input to Z Type Checker generated from case tool using scripting and syntactically validated

• Experiences with Z modeling
 – Difficult to learn, very steep learning curve
 – Excellent input to testers and reviewers who are much more effective in deriving test cases or reviewing code/design
 – Supports unambiguous communication between designer, programmer, tester and code reviewer
Delivery and operation

- Project completed in 1997
- Storm surge barrier officially commissioned in October 1998
Barrier reliability revisited

• 2006: concerns raised on reliability of the barrier
• Two reliability studies by independent parties performed for government
• Main conclusion
 – Pro-active maintenance critical for reliability
 – Availability of spare parts
 – Guaranteed repair times
 – Well-defined contracts and processes for operation, maintenance and repair

• Impact on BOS
 – Stricter repair times on specific hardware components
Results from actual operation

- Test closure every year since 1997
- First closure with an actual storm on November 11th, 2007
- No failures
- Software quality
 - No critical or major errors found that might affect barrier operation
 - Majority of changes requested on UI
 - Input validation was introduced
Lessons Learned from operation

• Operator/engineer is paged whenever some part is in error condition
 – In practice there is always something in error (though not fatal)
 – Most errors originate between 9:00 and 17:00 hrs
 – No errors between Christmas and New-Year!
• Do not under-estimate effect of human interactions such as maintenance
 – Repair on pumps and valves
 – Disconnected cables
 – Much more construction maintenance than anticipated in software design
Lessons learned (2)

• Very strict development/change process needed, but causing long cycles
 – Storm season October to April
 – Yearly trial (functioneringssluiting) in September (date set a year ahead)
 – Acceptance test consists of running 20 real storms on the test system (~60 days)
 – New release has to be ready for test in June
 – Normally not feasible => wait for next year
• Most changes requested in human interaction: GUI
• Extensive self-verification during start-up takes 2,5 hours
 – Not considered important: only started once a year
 – But… nightmare for test system
Mid-life upgrade project

- Hardware is end of life
- Port to new platform
- Methods and techniques from the original project still apply
- Improved error diagnostics and drill-down functionality
- GUI taken out of the core system
- Currently under development
Experiences from the upgrade project

• Use of Z from original project is still effective
 – Tricks required to make tooling work
 – Steep learning curve due to new development team
 – Formal methods missing in software engineering education

• Formal methods augment and improve existing techniques, especially the combination of
 – Formal specification
 – Module testing
 – Code review

• Experience is difficult to retain organizationally
 – People move on in their career
 – Amount of projects applying formal methods is low
Current status

• Logica
 – Few customers are willing to pay the price of a SIL4 project
 • Required reliability reduced by conventional design techniques
 – Learning curve for formal methods is still steep
 – Cooperating with University of Twente in formal methods research

• Acision
 – Experience with storm surge barrier re-used in Telecom products
 – Formal specification badly needed in telecommunications protocols
 • Both Internet RFCs and 3GPP specifications lack formality
 • Set back from the more rigorous SDL notation used originally in ETSI
 – Cooperating with Technical University Eindhoven on formal architecture verification
A look to the future: what do we need most

- Support for the specification and design phase.
 - Majority of the problems are introduced in the specification and design, not the implementation.
 - External systems need to be part of formal specification
- Support for practical methods and tooling that make the use of formal methods simple.
 - Notation and tooling need to support engineers
 - Promising developments in this area, e.g., Verum
- Standardize on specific formal methods (best of breed) as part of the standard computer science education.
 - Learning how to specify is critical engineering knowledge
 - Even if people have encountered formal methods, there are too many proprietary variations
Questions?